Statistical Physics B 1100-4SPB
1. Recap of ensemble theory and ideal systems
2. Statistical mechanics of classical interacting systems: Mayer expansion, pair correlation function, structure factor, Ornstein-Zernike relation, closure relations, hard-sphere fluids.
3. Systems in an external potential, inhomogeneous systems, density functional theory.
4. Phase behaviour, phase diagrams, spinodal, binodal.
5. Effective interactions
6. Foundations of linear irreversible thermodynamics, minimum entropy production principle, Onsager reciprocity, Curie principle.
7. Brownian motion, fluctuation-dissipation theorem, linear response theory, self-diffusion and collective diffusion.
8. Elements of kinetic theory, H theorem, hydrodynamic limit.
Koordynatorzy przedmiotu
W cyklu 2024Z: | W cyklu 2023Z: |
Założenia (opisowo)
Efekty kształcenia
The student will have a working knowledge of how to apply statistical mechanics in and out of equilibrium.
Kryteria oceniania
Mid-term exam (30%), hand-in exercises (30%), final exam (40%).
Literatura
R. K. Pathria and P. D. Beale, Statistical Mechanics
K. Huang, Statistical mechanics
F. Schwabl, Statistical mechanics
R.H. Swendsen, An introduction to statistical mechanics and thermodynamics
F. Mandl, Statistical physics
H.B. Callen, Thermodynamics
J. K. G. Dhont – An introduction to the dynamics of colloids
S. R. de Groot and P. Mazur – Non-equilibrium thermodynamics
J.-P. Hansen and I. R. MacDonald - Theory of simple liquids
J.R. Dorfman, H. van Beijeren, and T. R. Kirkpatrick, Contemporary kinetic theory of matter