General Relativity I 1100-3In`OTW1
1. Foundations of differential geometry (manifolds, tensor fields, Lie derivative, covariant derivative, parallel transport, curvature, metric tensor, Killing vector fields)
2. Postulates of GR
3. Einstein equations for weak fields
4. Newtonian limit of GR
5. Gravitational waves (linear approximation)
6. The Schwarzschild solution
7. Experimental tests of GR
8. Cosmological models
Course coordinators
Term 2023Z: | Term 2024Z: |
Prerequisites (description)
Assessment criteria
It is required to obtain at least half of the sum of points from 2 midterm tests (weight 30%), homework (20%) and written exam (50%).
Practical placement
none
Bibliography
N. Straumann, General Relativity with Applications to Astrophysics
R.M.Wald, General Relativity
C.W. Misner, K.S. Thorne, J.A. Wheeeler, Gravitation
B.F. Schutz, Wstęp do ogólnej teorii względności
W. Kopczynski, A. Trautman., Czasoprzestrzeń i grawitacja